
PSLQ: An Algorithm to Discover Integer Relations

David H. Bailey∗ and J.M. Borwein†

April 3, 2009

1. Introduction. Let x = (x1, x2, · · · , xn) be a vector of real or complex numbers. x
is said to possess an integer relation if there exist integers ai, not all zero, such that

a1x1 + a2x2 + · · ·+ anxn = 0.

By an integer relation algorithm, we mean a practical computational scheme that can
recover the vector of integers ai, if it exists, or can produce bounds within which no
integer relation exists. As we will see in the examples below, an integer relation algorithm
can be used to recognize a computed constant in terms of a formula involving known
constants, or to discover an underlying relation between quantities that can be computed
to high precision. At the present time, the most effective algorithm for integer relation
detection is the “PSLQ” algorithm of mathematician-sculptor Helaman Ferguson [10, 4].
Some efficient “multi-level” implementations of PSLQ, as well as a variant of PSLQ that
is well-suited for highly parallel computer systems, are given in [4].

PSLQ constructs a sequence of integer-valued matrices Bn that reduces the vector
y = xBn, until either the relation is found (as one of the columns of Bn), or else precision
is exhausted. At the same time, PSLQ generates a steadily growing bound on the size of
any possible relation. When a relation is found, the size of smallest entry of the vector
y abruptly drops to roughly “epsilon” (i.e. 10−p, where p is the number of digits of
precision). The size of this drop can be viewed as a “confidence level” that the relation
is real and not merely a numerical artifact—a drop of 20 or more orders of magnitude
almost always indicates a real relation (see Figure 1).

Very high precision arithmetic must be used in PSLQ. If one wishes to recover a
relation of length n, with coefficients of maximum size d digits, then the input vector
x must be specified to at least nd digits, and one must employ nd-digit floating-point
arithmetic. Maple and Mathematica include multiple precision arithmetic facilities and
Maple ships with a full implementation of PSLQ. One may also use any of several freeware
multiprecision software packages, for example the ARPREC package by the first author

∗Lawrence Berkeley National Laboratory, Berkeley, CA 94720, dhbailey@lbl.gov. Supported in part
by the Director, Office of Computational and Technology Research, Division of Mathematical, Informa-
tion, and Computational Sciences of the U.S. Department of Energy, under contract number DE-AC02-
05CH11231.

†School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, NSW 2308, Aus-
tralia jonathan.borwein@newcastle.edu.au

1

50 100 150 200

�250

�200

�150

�100

�50

Figure 1: log10 maxk |yk| versus iteration number in a typical PSLQ run

and colleagues at LBNL [7]. In the remaining sections we describe various representative
applications of PSLQ. More detail about these examples is given in [8] and the references
therein.

2. Finding Algebraic Relations Using PSLQ. One immediate and impressive ap-
plication of PSLQ in the field of mathematical number theory is to determine whether or
not a given constant α, whose value can be computed to high precision, is algebraic of some
degree n or less. This can be done by first computing the vector x = (1, α, α2, · · · , αn) to
high precision and then applying an integer relation algorithm to the resulting (n+1)-long
vector. If a relation is found for x, then this relation vector is precisely the set of integer
coefficients of a polynomial satisfied by α (to the precision specified).

One of the first results of this sort was the identification of the constant B3 =
3.54409035955 B3 is the third bifurcation point of the logistic map xk+1 = rxk(1−xk),
which exhibits period doubling shortly before the onset of chaos. To be precise, B3 is the
smallest value of the parameter r such that successive iterates xk exhibit eight-way peri-
odicity instead of four-way periodicity. B3 can be computed to arbitrarily high precision
by means of an iterative algorithm [6]. When PSLQ is applied to the 13-long vector
(1, B3, B

2
3 , B

3
3 , · · · , B12

3), one obtains the result that B3 is a root of the polynomial

0 = 4913 + 2108t2 − 604t3 − 977t4 + 8t5 + 44t6 + 392t7 − 193t8 − 40t9

+ 48t10 − 12t11 + t12.

Recently, B4 = 3.564407268705 · · · , the fourth bifurcation point of the logistic map,
was identified using PSLQ by British physicist David Broadhurst [4]. Some conjectural
reasoning had suggested that B4 might satisfy a 240-degree polynomial, and some further
analysis had suggested that the constant α = −B4(B4 − 2) might satisfy a 120-degree

2

polynomial. In order to test this hypothesis, Broadhurst applied a PSLQ program to
the 121-long vector (1, α, α2, · · · , α120). Indeed, a relation was found, though 10,000-digit
arithmetic was required. The recovered integer coefficients descend monotonically from
25730 ≈ 1.986 × 1072 to 1. This was subsequently proven using Groebner bases [6].

3. A New Formula for Pi. Through the centuries mathematicians have assumed
that there is no shortcut to computing just the n-th digit of π. Thus, it came as no small
surprise when such an algorithm was discovered in 1996 [3]. In particular, this simple
scheme allows one to compute binary or hexadecimal (base-16) digits of π starting at an
arbitrary position, without computing any of the preceding digits. For instance, the one
millionth hex digit of π can be computed in this manner on a current-generation personal
computer in only about 10 seconds run time. This scheme is based on the following new
formula, which was discovered in 1996 using PSLQ:

π =
∞
∑

k=0

1

16k

(

4

8k + 1
−

2

8k + 4
−

1

8k + 5
−

1

8k + 6

)

.

Since 1996, numerous formulas of this same type have been found for various constants
[1, 8]. Here, for instance, is a formula for π2 that permits base-3 digits to be computed
beginning at an arbitrary starting position:

π2 =
2

27

∞
∑

k=0

1

729k

(

243

(12k + 1)2
−

405

(12k + 2)2
−

81

(12k + 4)2
−

27

(12k + 5)2

−
72

(12k + 6)2
−

9

(12k + 7)2
−

9

(12k + 8)2
−

5

(12k + 10)2
+

1

(12k + 11)2

)

.

Interestingly, there is a corresponding binary formula for π2 but there is provably no
similar decimal formula for π [8, Ch. 3].

4. Identification of Multiple Zeta Constants A large number of results has been
found over the last 15 years using PSLQ in the course of research on multiple zeta sums,
such as those shown in Table 1. After computing the numerical values of these constants,
a PSLQ program was used to determine if a given constant satisfied an identity of a
conjectured form. These efforts produced numerous empirical evaluations and suggested
general results [2, 9]. Eventually, elegant proofs were found for many of these specific
and general results. Three examples of PSLQ results that were subsequently proven
are given in Table 1. In the table, ζ(t) =

∑∞

j=1
j−t is the Riemann zeta function, and

Lin(x) =
∑∞

j=1
xjj−n denotes the polylogarithm function.

5. Ising integrals. One particularly fruitful application of these methods is the evalu-
ation of definite integrals, such as those that arise in mathematical physics. For example,
recently the present authors, together with Richard Crandall, investigated three classes
of n-fold integrals, which arise in Ising theory and also (in some cases) in quantum field

3

∑∞

k=1

(

1 + 1

2
+ · · ·+ 1

k

)2
(k + 1)−4 = 37

22680
π6 − ζ2(3)

∑∞

k=1

(

1 + 1

2
+ · · ·+ 1

k

)3
(k + 1)−6 = ζ3(3) + 197

24
ζ(9) + 1

2
π2ζ(7)

− 11

120
π4ζ(5) − 37

7560
π6ζ(3)

∑∞

k=1

(

1 − 1

2
+ · · ·+ (−1)k+1 1

k

)2
(k + 1)−3 = 4 Li5(

1

2
) − 1

30
ln5(2) − 17

32
ζ(5)

− 11

720
π4 ln(2) + 7

4
ζ(3) ln2(2) + 1

18
π2 ln3(2) − 1

8
π2ζ(3)

Table 1: Some multiple zeta identities found by PSLQ

theory:

Cn :=
4

n!

∫ ∞

0

· · ·

∫ ∞

0

1
(

∑n

j=1
(uj + 1/uj)

)2

du1

u1

· · ·
dun

un

Dn :=
4

n!

∫ ∞

0

· · ·

∫ ∞

0

∏

i<j

(

ui−uj

ui+uj

)2

(

∑n

j=1
(uj + 1/uj)

)2

du1

u1

· · ·
dun

un

En = 2

∫ 1

0

· · ·

∫ 1

0

(

∏

1≤j<k≤n

uk − uj

uk + uj

)2

dt2 dt3 · · ·dtn,

where in the last line uk = t1t2 · · · tk.
Computing high-precision values of n-fold integrals such as this is very difficult for

n greater than three or four. But we a simple substitution reduces a C integral to a
1-dimensional integral:

Cn =
2n

n!

∫ ∞

0

tKn
0 (p) dt,

where K(t) is the modified Bessel function. In this form, we were able to evaluate Cn

to over 1000-digit accuracy, for n up to 1024. With these numerical values in hand, we
quickly found that C1 = 2, C2 = 1, C3 = L−3(2) =

∑

n≥0
(1/(3n + 1)2 − 1/(3n + 2)2),

and C4 = 7ζ(3)/12. We also discovered numerically that

lim
n→∞

Cn = 2e−2γ,

where γ is Euler’s constant. Further computation established results such as:

D2 = 1/3, D3 = 8 + 4π2/3 − 27 L−3(2), D4 = 4π2/9 − 1/6 − 7ζ(3)/2

and

E2 = 6 − 8 log 2, E3 = 10 − 2π2 − 8 log 2 + 32 log2 2

E4 = 22 − 82ζ(3) − 24 log 2 + 176 log2 2 − 256(log3 2)/3

+16π2 log 2 − 22π2/3

E5

?
= 42 − 1984 Li4(1/2) + 189π4/10 − 74ζ(3) − 1272ζ(3) log 2

+40π2 log2 2 − 62π2/3 + 40(π2 log 2)/3 + 88 log4 2

+464 log2 2 − 40 log 2.

4

The E5 integral was found after transforming its defining 5-fold integral representation
into an extremely complicated 3-fold integral. We then computed this 3-fold integral to
250-digit precision, by using a parallel quadrature program implemented on 1024 CPUs of
a parallel computer system, and then discovered the above-listed experimental identity by
using PSLQ. This identity has a question mark because, unlike the others mentioned in
this paper, we do not yet have a formal proof. Nonetheless it is established numerically at
least 180 orders of magnitude beyond the level of numerical “chance,” and so we are quite
confident in the result. Such confidence is typically obtainable if the constants involved
can be computed to sufficiently high precision. Sometimes as with Cn this is relatively
easy. In other cases, such as E5, it involves much more labor.

References

[1] David H. Bailey, “A Compendium of BBP-Type Formulas,” available at
http://crd.lbl.gov/~dhbailey/dhbpapers/bbp-formulas.pdf.

[2] David H. Bailey, Jonathan M. Borwein and Roland Girgensohn, “Experimental
Evaluation of Euler Sums,” Experimental Mathematics, vol. 4, no. 1, 1994, pg. 17–30.

[3] David H. Bailey, Peter B. Borwein and Simon Plouffe, “On The Rapid Computation of
Various Polylogarithmic Constants,” Math. of Computation, vol. 66, no. 218, 1997, pg.
903–913.

[4] David H. Bailey and David J. Broadhurst, “Parallel Integer Relation Detection:
Techniques and Applications,” Math. of Computation, vol. 70, no. 236, pg. 1719–1736.

[5] David H. Bailey, J. M. Borwein and R. E. Crandall, “Integrals of the Ising class,” Journal

of Physics A: Mathematical and General, vol. 39 (2006), pg. 12271-12302.

[6] David H. Bailey, Jonathan M. Borwein, Vishal Kapoor and Eric Weisstein, “Ten
Problems in Experimental Mathematics,” American Math. Monthly, vol. 113, no. 6, 2006,
pg. 481–409.

[7] David H. Bailey, Yozo Hida, Xiaoye S. Li and Brandon Thompson, “ARPREC: An
Arbitrary Precision Computation Package,” Sept. 2002, available at
http://crd.lbl.gov/~dhbailey/dhbpapers/arprec.pdf.

[8] Jonathan M. Borwein and David H. Bailey, Mathematics by Experiment, AK Peters,
2003. Second edition, 2008. See also http://www.experimentalmath.info.

[9] David Borwein, Jonathan M. Borwein and Roland Girgensohn, “Explicit Evaluation of
Euler Sums,” Proc. Edinburgh Math. Society, vol. 38, 1995, pg. 277–294.

[10] Helaman R. P. Ferguson, David H. Bailey and Stephen Arno, “Analysis of PSLQ, An

Integer Relation Finding Algorithm,” Math. of Computation, vol. 68, 1999, pg. 351–369.

5

